The Birational Geometry of the Hilbert Scheme of Points on Surfaces
نویسنده
چکیده
In this paper, we study the birational geometry of the Hilbert scheme of points on a smooth, projective surface, with special emphasis on rational surfaces such as P2,P1 × P1 and F1. We discuss constructions of ample divisors and determine the ample cone for Hirzebruch surfaces and del Pezzo surfaces with K2 ≥ 2. As a corollary, we show that the Hilbert scheme of points on a Fano surface is a Mori dream space. We then discuss effective divisors on Hilbert schemes of points on surfaces and determine the stable base locus decomposition completely in a number of examples. Finally, we interpret certain birational models as moduli spaces of Bridgeland stable objects. When the surface is P1 × P1 or F1, we find a precise correspondence between the Mori walls and the Bridgeland walls, extending the results of [ABCH] to these surfaces.
منابع مشابه
Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملGeometry and Intersection Theory on Hilbert Schemes of Families of Nodal Curves
We study the relative Hilbert scheme of a family of nodal (or smooth) curves, over a base of arbitrary dimension, via its (birational) cycle map, going to the relative symmetric product. We show the cycle map is the blowing up of the discriminant locus, which consists of cycles with multiple points. We work out the action of the blowup or ’discriminant’ polarization on some natural cycles in th...
متن کاملEquilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space
In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...
متن کاملStructure of the Cycle Map for Hilbert Schemes of Families of Nodal Curves
We study the relative Hilbert scheme of a family of nodal (or smooth) curves, over a base of arbitrary dimension, via its (birational) cycle map, going to the relative symmetric product. We show the cycle map is the blowing up of the discriminant locus, which consists of cycles with multiple points. We study certain loci called node scrolls which play in important role in the geometry of the cy...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012